

'Prioritising cancer surveillance in chronic hepatitis B in the COVID-19 era. Time to stop and think?'

Ricky Sinharay^{1,4}, Andrew J. Grant², Lucy Rivett³, Rebecca Blackwell⁴, George Mells⁴, William Gelson⁴

¹Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK, ²MRC Biostatistics Unit, University of Cambridge, CB2 0SR, UK, ³Department of Infectious Diseases, Cambridge University NHS Hospitals Foundation Trust, Cambridge, CB2 0QQ, UK, 4Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK

Introduction

- Hepatitis B is the leading cause of hepatocellular carcinoma (HCC) globally.
- Guidance at the onset of the Sars-cov2 virus pandemic recommended the deferral of HCC surveillance. However the implications on liver cancer care are now emerging and the need for reorganisation of services is becoming urgent.

Methods

- We investigated how five HCC risk prediction scores could aid stratification of patients with chronic HBV (**Table 1**).
- HCC scores were calculated using parameters from three years prior to the cancer diagnosis. We compared the number of patients requiring cancer surveillance according to each score and regional surveillance guidance.

	GAG HCC score	REACH B score	Modified REACH B score	Modified PAGE B score	aMAP score
Reference	Yuen et al 2009	Yang el al 2011	Lee et al 2014	Kim et al 2018	Fan et al 2020
Score Parameters	Sum of:Age (years)GenderHBV Viral loadCirrhosis	 Sum of: Age (years) Gender ALT (U/L) HBV DNA viral load HBeAg +ve 	 Sum of: Age (years) Gender ALT (U/L) Liver fibrosis (kPa) HBeAg +ve 	 Sum of: Age (years) Gender Platelet count(10*9/L) Albumin 	 Algorithm based on Age (years) Gender Platelet count (10*9/L) ALBI score
Optimal score for low cancer risk	<82	<8	<10	≤8	<50

Table 1: Summary of HCC risk prediction scores

	HCC n=17	Controls n=17	P value
Age in years (Mean ± SD)	56.59 ±11.97	55.35 ±10.47	0.75
Gender n (%) M F	15 (88.24%) 2 (11.76%)	15 (88.24%) 2 (11.86%)	>0.99
BMI in kg/m ² (Median, IQR)	25 (22, 27.50)	25 (23.50,27)	0.88
Ethnicity n (%) Asian Caucasian Afro-Caribbean Mixed/other	8 (47.06%) 7(41.18%) 2 (11.76%) 0(0%)	11 (64.70%) 3 (17.65%) 3 (17.65%) 0 (0%)	0.65
Liver disease fibrosis stage n (%) Cirrhosis Severe fibrosis Moderate fibrosis Mild fibrosis No fibrosis Child-Pugh Score (if cirrhotic, n=35) A	11 (64.71%) 0 (0%) 1 (5.88%) 5 (29.41%) 0 (0%) 6 (54.55%)	3 (17.65%) 0 (0%) 1 (5.88%) 3 (17.65%) 10 (58.82%) 3 (100%)	
B C	4(36.36%) 1 (9.09%)	0 (0%) 0 (0%)	
HBeAg positive n(%) HBV DNA (IU/ml) (Median, IQR)	3 (17.65%) 6 (0, 1415)	1 (5.88%) 180 (17,117400)	0.29 0.08
Platelets (10*9/L) (Median, IQR) Albumin (g/L) (Median, IQR)	132 (66.50, 174.50) 38 (34, 42.50)	207 (171.50, 305) 42 (40, 43)	0.0001 0.02

Table 1: Baseline characteristics of study participants

Results

- The control HBV group was matched to the HCC group for age, gender, BMI and ethnicity (Table 2).
- The aMAP score had the highest discriminatory performance in HCC risk prediction at three years, followed by the mREACH B score, and mPAGE B score. However, only the mREACH B score had a negative predictive value (NPV) >99% (Figure 1 & 2)

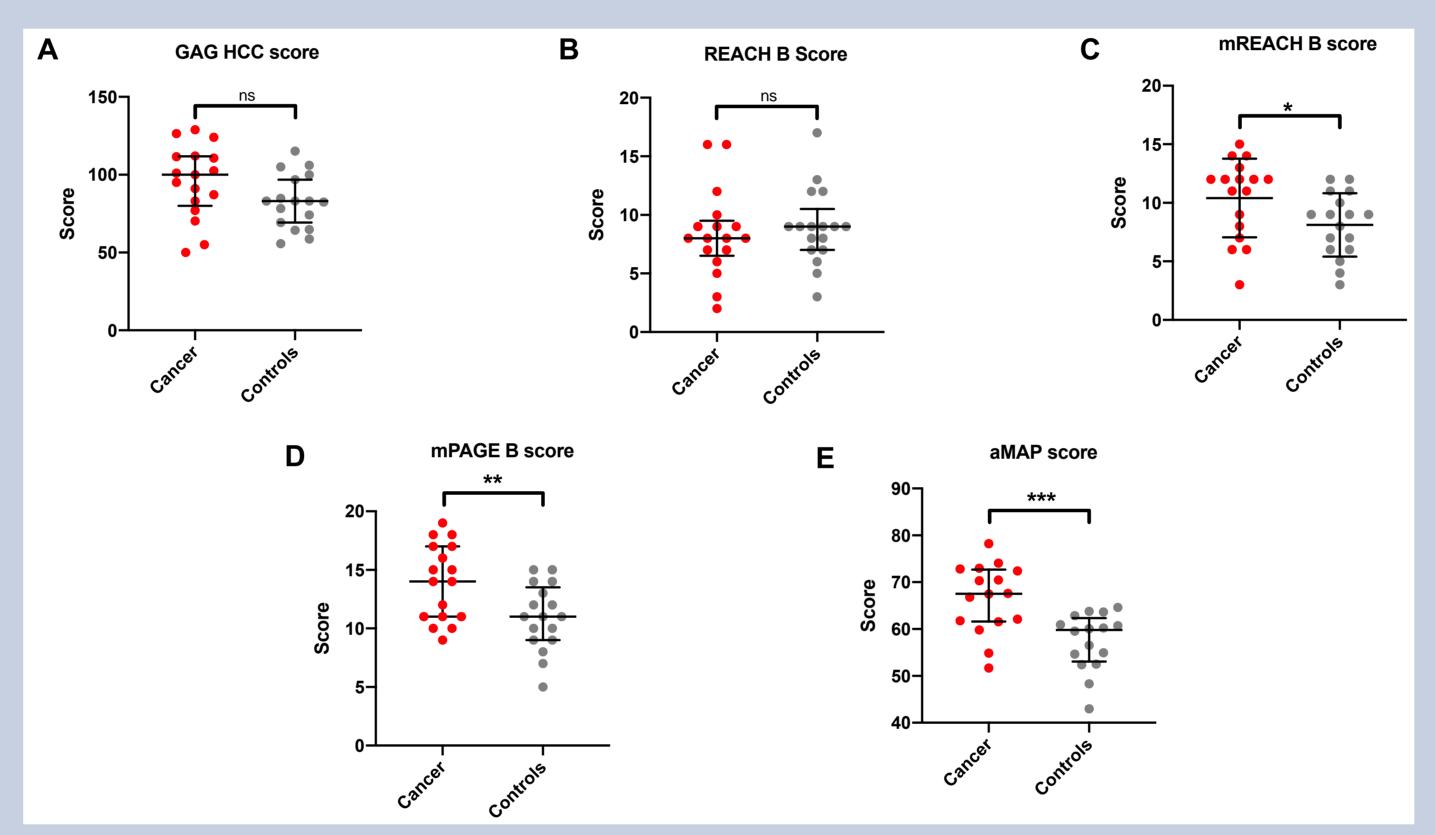
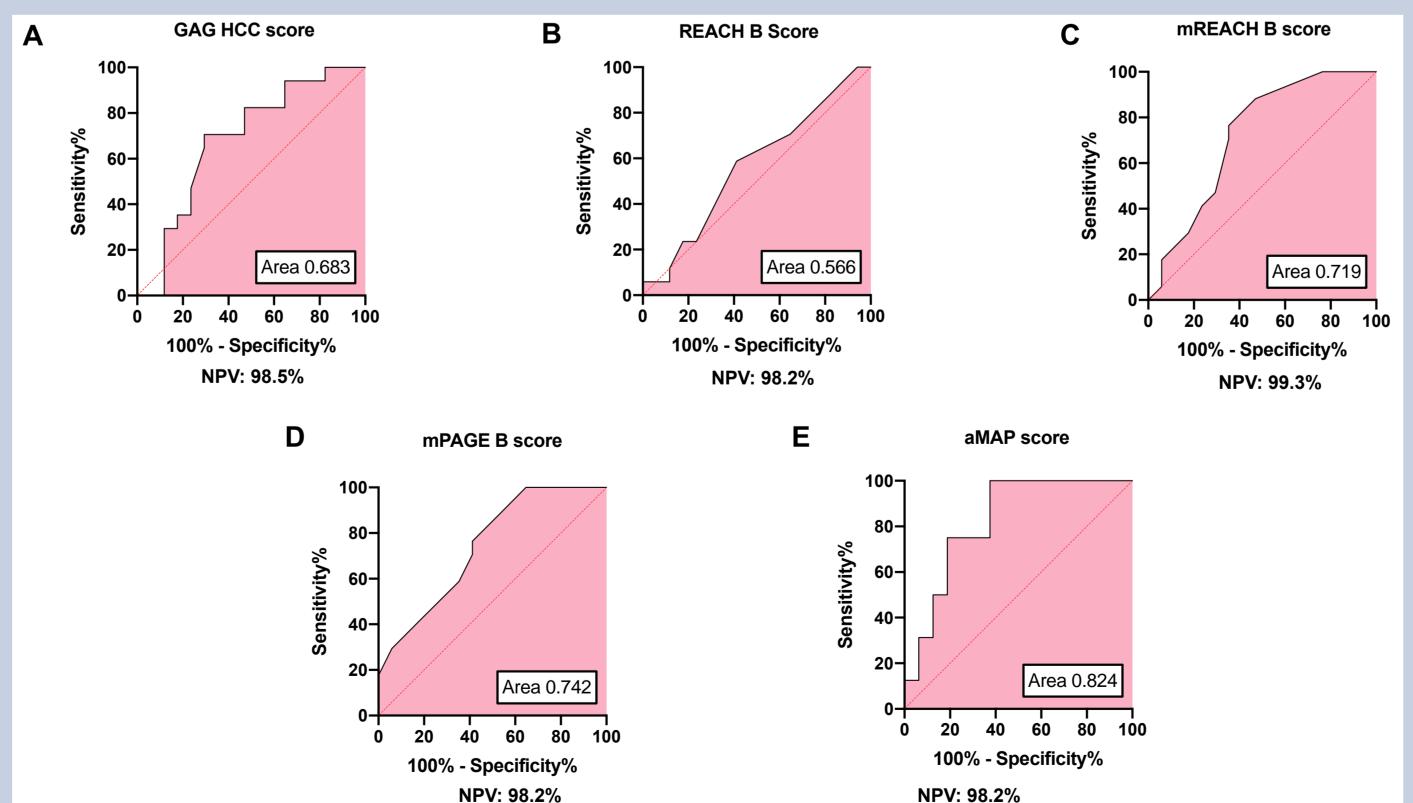
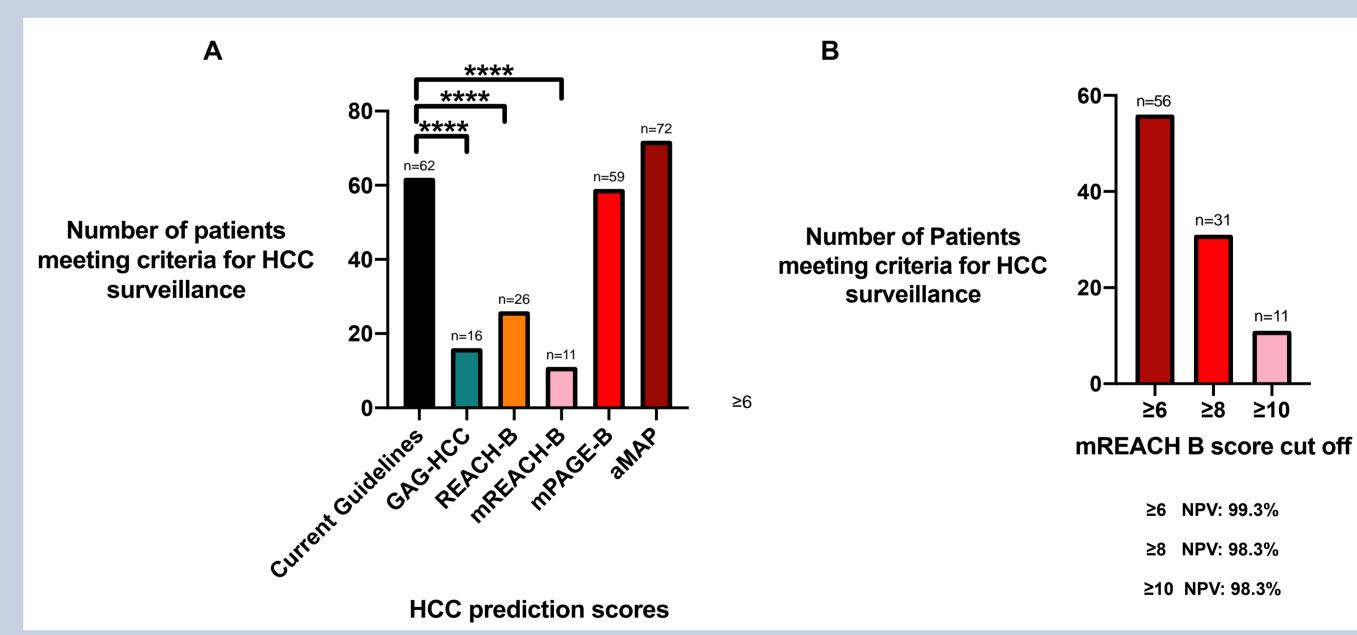


Figure 1: HCC risk scores calculated using parameters 3 years prior to HCC




Figure 2: Area under the Receiver-operating characteristic curve (auROC) for discriminative performance of each HCC risk score using parameters 3 years prior to HCC diagnosis to differentiate diagnosis of HCC from HBV controls.

 Regression analysis showed that the risk of HCC was highest for those with cirrhosis and in those with an AFP > 7 k/UL (Table 3).

Variable	Category	Log (OR)	P value < 0.05
Age (years)		0.065	0.321
Gender	Female	(reference)	
	Male	0.078	0.965
BMI (kg/m²)		-0.206	0.188
Ethnicity	Caucasian	(reference)	
	Asian	0.917	0.524
	Afro-Caribbean	-3.255	0.190
Liver fibrosis ^a		1.947	0.003
AFP (kU/I) ^b		3.978	0.002
HBV DNA Log10		0.228	0.460
Platelets (10*9/L)		-0.007	0.363
Albumin (g/L)		0.039	0.814

Table 3. Multi-level Logistic regression with all covariates (AFP and liver fibrosis categorised)

- Applying the mREACH B score to our HBV cohort identified 11 patients requiring HCC surveillance, compared with 62 under current guidelines (Figure 3A).
- Reducing the threshold resulted in more patients requiring surveillance, but did not affect the NPV (Figure 3B).

A) Number of patients requiring HCC surveillance according to each HCC risk score and current local guidelines

B) Number of patients requiring HCC surveillance according to the mREACH B score after using three cut-offs.

Conclusion

The use of HCC risk prediction scores could streamline the surveillance of patients with chronic HBV, at a time of extremely limited resources. Overall, the mREACH B score had both a strong discriminatory performance and a high NPV, thus safely identifying low risk patients not requiring surveillance.